Schaal Oven Storage Stability Test Evaluating antioxidant effectiveness in fats, oils, and fat-containing foods ### **Schaal Oven Storage Stability Test** ### Tests for determining oxidative stability Oxidative stability, or storage life until development of rancidity, is an important factor in the processing and marketing of fats, oils, and fat-containing foods. Methods for determining oxidative stability are therefore essential, particularly where antioxidants are being evaluated for effectiveness in retarding rancidity in these products. One widely used method involves storage tests in which oil, fat, or food products are stored under controlled conditions and evaluated periodically for organoleptic (odor and flavor) changes. Storage tests conducted under normal conditions of product use provide the most realistic determination of stability. However, these tests are usually too time consuming to be practical. For laboratory evaluations, a method of accelerated storage-testing has been developed. The simplest accelerated method utilizes oven storage.^{1–3} The Schaal Oven Test, 62.8°C (145°F), is often used for evaluating fats, oils, and baked goods such as crackers and pie crusts. Oven tests at lower temperatures are used for such products as essential oils and cheese spreads where elevated temperatures tend to distill volatile ingredients, break emulsions, or otherwise destroy original physical characteristics of the product. Shelf tests at ambient temperature are sometimes used for the latter product group and follow the same procedure, except for oven use. The complex compositions of food products and certain uncontrollable factors in conducting storage tests preclude strict comparisons or projections of test data. In reporting test results, it is common practice to describe the test used and to give time values for control (untreated) versus antioxidant-treated samples. Numerous papers describing the use of storage tests for evaluating oxidative stability and carry-through properties of antioxidant-treated products have been published.^{4–12} Data comparing results from storage stability tests and various methods of oxygen-absorption measurement are also available.^{13–15} ## Accelerated storage-testing of fats, oils and fat-containing foods #### Equipment - 1. Thermostatically controlled gravity convection oven capable of maintaining temperature range of 62.8° \pm 2.8°C to 23.9° \pm 1.2°C (145° \pm 5°F to 75° \pm 2°F) - 2. Glass jars (4-oz, wide mouth, with screw caps) #### Procedure - 1. Set oven for desired storage temperature. - 2. Label a sufficient number of the 4-oz jars with proper identification to provide 3–5 jars for each sample to be tested. For valid comparative results, control (no antioxidant) samples must be included in this test. Code the samples to eliminate any bias on the part of the organoleptic panel members. (Caution: Make certain that the labels used will adhere to the jars and remain legible during extended storage at elevated temperatures.) - 3. Record in a laboratory notebook the sample identification and the date of the beginning of the storage test. - 4. Fill the labeled jars one-third to one-half full with the desired test samples and cap the jars. - 5. Place the jars in the oven in a manner to allow free circulation of the heated air in the closed oven. - 6. Evaluate the odors and/or flavors of the samples at appropriate intervals, using a trained organoleptic panel consisting of at least three members. The length of the interval between evaluations will depend on the nature of the individual sample. However, samples having relatively short Schaal Oven life (1 week or less) should be evaluated at 24-hour intervals, while samples having longer oven life may be evaluated twice a week. A sample is removed from the oven when a rancid odor or flavor has been detected by a majority of the panel members. - 7. Record in the laboratory notebook the date each sample is removed from the oven. - 8. Calculate for each sample the average days to rancidity (by odor or flavor) when all the replicates have been removed from the oven. - 9. Report results as "Storage Stability, as Days to Develop Rancid Odor (or Flavor) at _____°C (____°F)." #### Additional information Tables 1 and 2 give typical results obtained in the Eastman laboratories from storage stability tests on fats, oils, and food products treated with Eastman Tenox™ antioxidants. These data are provided to give an indication of the overall time involved and comparative values obtained when these tests are run. For more information on specific applications and to determine which antioxidants may be most effective in certain applications, refer to appropriate references cited in the bibliography or contact your Eastman representative. Table 1 Examples of stabilities of Eastman Tenox™ antioxidant-treated food products determined by oven storage tests | | Antioxidant ^a treatment,
% by wt of | Storage stability as days to develop rancid | | | |----------------|---|---|--|--| | Food product | food product | odor @ 62.8°C (145°F) | | | | | None (control) | 10 | | | | Oat cereal | 0.005 Eastman Tenox™ BHA | 34 | | | | | None (control) | 12 | | | | Corn cereal | 0.005 Eastman Tenox™ TBHQ | 56 | | | | | None (control) | 9 | | | | | 0.02 Eastman Tenox™ BHA | 9 | | | | Cottonseed oil | 0.02 Eastman Tenox™ TBHQ | 23 | | | | | None (control) | 6 | | | | Soybean oil | 0.02 Eastman Tenox™ BHA | 8 | | | | Butter mints | None (control) | 27 | | | ^aAntioxidants used: Eastman Tenox™ BHA — butylated hydroxyanisole Eastman Tenox™ TBHQ — tert-butylhydroquinone Table 2 Examples of carry-through of Eastman Tenox™ antioxidants into food products with antioxidant-treated fats or oils as determined by oven storage tests Storage stability as days^b to develop rancid odor @ 62.8°C (145°F) | | Antioxidant | | | Potato | |----------------|--------------------------------------|--------|----------|--------| | Fat or oil | treatment, wt %a | Pastry | Crackers | chips | | | None (control) | 2 | 3 | c | | Lard | 0.01 Eastman Tenox [™] BHA | 21 | 22 | _ | | | None (control) | c | c | 12 | | | 0.02 Eastman Tenox [™] BHA | | _ | 13 | | Cottonseed oil | 0.02 Eastman Tenox [™] TBHQ | _ | _ | 20 | ^aBased on weight of fat or oil. $^{{}^{\}rm b} Averages\ of\ quadruplicate\ determinations.$ ^cDash indicates test was not conducted. ### **EASTMAN** #### **Eastman Chemical Company** #### **Corporate Headquarters** P.O. Box 431 Kingsport, TN 37662-5280 U.S.A. Telephone: U.S.A. and Canada, 800-EASTMAN (800-327-8626) Other Locations, (1) 423-229-2000 Fax: (1) 423-229-1193 #### **Eastman Chemical Latin America** 9155 South Dadeland Blvd. Suite 1116 Miami, FL 33156 U.S.A. Telephone: (1) 305-671-2800 Fax: (1) 305-671-2805 #### Eastman Chemical B.V. Fascinatio Boulevard 602-614 2909 VA Capelle aan den IJssel The Netherlands Telephone: (31) 10 2402 111 Fax: (31) 10 2402 100 #### Eastman (Shanghai) Chemical Commercial Company, Ltd. Jingan Branch 1206, CITIC Square No. 1168 Nanjing Road (W) Shanghai 200041, P.R. China Telephone: (86) 21 6120-8700 Fax: (86) 21 5213-5255 #### Eastman Chemical Japan Ltd. AIG Aoyama Building 5F 2-11-16 Minami Aoyama Minato-ku, Tokyo 107-0062 Japan Telephone: (81) 3-3475-9510 Fax: (81) 3-3475-9515 #### Eastman Chemical Asia Pacific Pte. Ltd. #05-04 Winsland House 3 Killiney Road Singapore 239519 Telephone: (65) 6831-3100 Fax: (65) 6732-4930 www.eastman.com #### **Bibliography** - 1. Grettie, D. P., and Newton, R. C. Oil and Fat Ind., 8:291 (1931). - 2. Pool, W. O. Oil and Fat Ind., 8:331 (1931). - 3. Joyner, N. T., and McIntyre, J. E. Oil and Soap, 15:184-6 (1938). - 4. Boln, R. M., and Olson, R. S. Oil and Soap, 11:210 (1934). - 5. Higgins, J. W., and Black, H. C. Oil and Soap, 21:277 (1944). - Lundberg, W. O., Halvorson, H. O., and Burr, G. O. Oil and Soap, 21:33 (1944). - 7. Morris, S. G., Krakel, L. A., Hammer, D., Meyers, J. S., and Riemenschneider, R. W. *JAOCS*, 24:309 (1947). - 8. Mattel, K. F., and Black, H. C. JAOCS, 24:325-7 (1947). - Larsen, R. A., McIntire, J. M., and Peterson, M. S., "Stability of Shortenings in Cereal and Baked Products," Symposium, Research and Development Associates, Quartermaster Food and Container Institute, May 1953. - 10. Mahon, J. H., and Chapman, R. A. JAOCS, 31(3):108-112 (1954). - 11. Ottaway, F. J. H., and Coppock, J. B. M. *J. Sci. Fd. Agric.*, 9:294–9 (1958). - 12. Sherwin, E. R. JAOCS, 45(11):632A, 634A, 646A, 649A (1968). - 13. Gearhart, W. M., Stuckey, B. N., and Austin, J. J. *JAOCS*, 34(9):427–30 (1957). - 14. Stuckey, B. N., Sherwin, E. R., and Hannah, F. D., Jr. *JAOCS*, 35(11):581–4 (1958). - Pohle, W. D., Gregory, R. L., Weiss, T. J., Van Giessen, B., Taylor, J. R., and Ahern, J. J. JAOCS, 41:795–8 (1964). Material Safety Data Sheets providing safety precautions, that should be observed when handling and storing Eastman products, are available online or by request. You should obtain and review the available material safety information before handling any of these products. If any materials mentioned are not Eastman products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed. Neither Eastman Chemical Company nor its marketing affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment and for the health and safety of your employees and purchasers of your products. NO WARRANTY IS MADE OF THE MERCHANTABILITY OR FITNESS OF ANY PRODUCT, AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE. Eastman and Tenox are trademarks of Eastman Chemical Company. © Eastman Chemical Company, 2010.